1,277 research outputs found

    Massive Gravitino Propagator in Maximally Symmetric Spaces and Fermions in dS/CFT

    Get PDF
    We extend the method of calculation of propagators in maximally symmetric spaces (Minkowski, dS, AdS and their Euclidean versions) in terms of intrinsic geometric objects to the case of massive spin 3/2 field. We obtain the propagator for arbitrary space-time dimension and mass in terms of Heun's function, which is a generalization of the hypergeometric function appearing in the case of other spins. As an application of this result we calculate the conformal dimension of the dual operator in the recently proposed dS/CFT correspondence both for spin 3/2 and for spin 1/2. We find that, in agreement with the expectation from analytic continuation from AdS, the conformal dimension of the dual operator is {\it always} complex (i.e. it is complex for every space-time dimension and value of the mass parameter). We comment on the implications of this result for fermions in dS/CFT.Comment: 20 pages, references added, v3: typos fixe

    Gravitational Higgs Mechanism

    Full text link
    We discuss the gravitational Higgs mechanism in domain wall background solutions that arise in the theory of 5-dimensional Einstein-Hilbert gravity coupled to a scalar field with a non-trivial potential. The scalar fluctuations in such backgrounds can be completely gauged away, and so can be the graviphoton fluctuations. On the other hand, we show that the graviscalar fluctuations do not have normalizable modes. As to the 4-dimensional graviton fluctuations, in the case where the volume of the transverse dimension is finite the massive modes are plane-wave normalizable, while the zero mode is quadratically normalizable. We then discuss the coupling of domain wall gravity to localized 4-dimensional matter. In particular, we point out that this coupling is consistent only if the matter is conformal. This is different from the Randall-Sundrum case as there is a discontinuity in the delta-function-like limit of such a smooth domain wall - the latter breaks diffeomorphisms only spontaneously, while the Randall-Sundrum brane breaks diffeomorphisms explicitly. Finally, at the quantum level both the domain wall as well as the Randall-Sundrum setups suffer from inconsistencies in the coupling between gravity and localized matter, as well as the fact that gravity is generically expected to be delocalized in such backgrounds due to higher curvature terms.Comment: 16 pages, revtex; a minor correctio

    Effect of stators geometry on the resonance sensitivity of capacitive MEMS

    Get PDF
    open4openFrangi, A.; Laghi, G.; Minotti, P.; Langfelder, G.Frangi, ATTILIO ALBERTO; Laghi, Giacomo; Minotti, Paolo; Langfelder, Giacom

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo

    Identifying Pathway Proteins in Networks using Convergence

    Get PDF
    One of the key goals of systems biology concerns the analysis of experimental biological data available to the scientific public. New technologies are rapidly developed to observe and report whole-scale biological phenomena; however, few methods exist with the ability to produce specific, testable hypotheses from this noisy ‘big’ data. In this work, we propose an approach that combines the power of data-driven network theory along with knowledge-based ontology to tackle this problem. Network models are especially powerful due to their ability to display elements of interest and their relationships as internetwork structures. Additionally, ontological data actually supplements the confidence of relationships within the model without clouding critical structure identification. As such, we postulate that given a (gene/protein) marker set of interest, we can systematically identify the core of their interactions (if they are indeed working together toward a biological function), via elimination of original markers and addition of additional necessary markers. This concept, which we refer to as “convergence,” harnesses the idea of “guilt-by-association” and recursion to identify whether a core of relationships exists between markers. In this study, we test graph theoretic concepts such as shortest-path, k-Nearest- Neighbor and clustering) to identify cores iteratively in data- and knowledge-based networks in the canonical yeast Pheromone Mating Response pathway. Additionally, we provide results for convergence application in virus infection, hearing loss, and Parkinson’s disease. Our results indicate that if a marker set has common discrete function, this approach is able to identify that function, its interacting markers, and any new elements necessary to complete the structural core of that function. The result below find that the shortest path function is the best approach of those used, finding small target sets that contain a majority or all of the markers in the gold standard pathway. The power of this approach lies in its ability to be used in investigative studies to inform decisions concerning target selection

    Energy Transfer between Throats from a 10d Perspective

    Full text link
    Strongly warped regions, also known as throats, are a common feature of the type IIB string theory landscape. If one of the throats is heated during cosmological evolution, the energy is subsequently transferred to other throats or to massless fields in the unwarped bulk of the Calabi-Yau orientifold. This energy transfer proceeds either by Hawking radiation from the black hole horizon in the heated throat or, at later times, by the decay of throat-localized Kaluza-Klein states. In both cases, we calculate in a 10d setup the energy transfer rate (respectively decay rate) as a function of the AdS scales of the throats and of their relative distance. Compared to existing results based on 5d models, we find a significant suppression of the energy transfer rates if the size of the embedding Calabi-Yau orientifold is much larger than the AdS radii of the throats. This effect can be partially compensated by a small distance between the throats. These results are relevant, e.g., for the analysis of reheating after brane inflation. Our calculation employs the dual gauge theory picture in which each throat is described by a strongly coupled 4d gauge theory, the degrees of freedom of which are localized at a certain position in the compact space.Comment: 25 pages; a comment adde

    A Remark on Non-conformal Non-supersymmetric Theories with Vanishing Vacuum Energy Density

    Get PDF
    We discuss non-conformal non-supersymmetric large N gauge theories with vanishing vacuum energy density to all orders in perturbation theory. These gauge theories can be obtained via a field theory limit of Type IIB D3-branes embedded in orbifolded space-times. We also discuss gravity in this setup.Comment: 13 pages, revtex; a minor change in wordin

    Warped Spectroscopy: Localization of Frozen Bulk Modes

    Get PDF
    We study the 10D equation of motion of dilaton-axion fluctuations in type IIB string compactifications with three-form flux, taking warping into account. Using simplified models with physics comparable to actual compactifications, we argue that the lightest mode localizes in long warped throats and takes a mass of order the warped string scale. Also, Gukov-Vafa-Witten superpotential is valid for the lightest mass mode; however, the mass is similar to the Kaluza-Klein scale, so the dilaton-axion should be integrated out of the effective theory in this long throat regime (leaving a constant superpotential). On the other hand, there is a large hierarchy between flux-induced and KK mass scales for moderate or weak warping. This hierarchy agrees with arguments given for trivial warping. Along the way, we also estimate the effect of the other 10D supergravity equations of motion on the dilaton-axion fluctuation, since these equations act as constraints. We argue that they give negligible corrections to the simplest approximation.Comment: 24pp + appendices, 6 figs, JHEP3 class; v2. corrected reference; v3. added clarifications; v4. corrected typo

    Is human blood a good surrogate for brain tissue in transcriptional studies?

    Get PDF
    Abstract Background Since human brain tissue is often unavailable for transcriptional profiling studies, blood expression data is frequently used as a substitute. The underlying hypothesis in such studies is that genes expressed in brain tissue leave a transcriptional footprint in blood. We tested this hypothesis by relating three human brain expression data sets (from cortex, cerebellum and caudate nucleus) to two large human blood expression data sets (comprised of 1463 individuals). Results We found mean expression levels were weakly correlated between the brain and blood data (r range: [0.24,0.32]). Further, we tested whether co-expression relationships were preserved between the three brain regions and blood. Only a handful of brain co-expression modules showed strong evidence of preservation and these modules could be combined into a single large blood module. We also identified highly connected intramodular "hub" genes inside preserved modules. These preserved intramodular hub genes had the following properties: first, their expression levels tended to be significantly more heritable than those from non-preserved intramodular hub genes (p < 10-90); second, they had highly significant positive correlations with the following cluster of differentiation genes: CD58, CD47, CD48, CD53 and CD164; third, a significant number of them were known to be involved in infection mechanisms, post-transcriptional and post-translational modification and other basic processes. Conclusions Overall, we find transcriptome organization is poorly preserved between brain and blood. However, the subset of preserved co-expression relationships characterized here may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when brain tissue samples are unavailable

    Cosmic Super-Strings and Kaluza-Klein Modes

    Full text link
    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.Comment: 35pp, 5 figs, v2: minor modifications and Refs. added, matches published versio
    • 

    corecore